YEAR	AUTUMN 1	AUTUMN 2	SPRING 1	SPRING 2	SUMMER 1	SUMMER 2
7	Pupils will be designing and	Objectives 2 of 2	Throughout our KS3 we	Objectives 2 of 2	Logo Keychain Design	Super Curriculum
	making a model chair that is	Able students will	are striving for students	To appreciate why		This project is all about
	unique and inspired by a design	Research existing table	to be competent in the	isometric drawing is	Context: To learn simple	user needs and pupils
	movement. This is obtained by	chairs and products	following and delivery	used and learn the rules	hand drawing techniques	will be completing an
	gaining an understanding of	available	skills based curriculum	that accompany it.	and image presentation	Architecture project.
	different design eras, they will	Generate ideas	in Designing,	Develop rendering skills	skills. To appreciate some	pupils will be carrying
	then analyse existing products	Further develop ideas	developing technical	To present ideas so	CAD packages and learn	out the project through
	to help generate more design	Make cardboard	knowledge and	they stand out, have	their basic operation and	out the year and it will
	ideas. They will used 3d CAD	prototypes	prototyping. This	depth and realism.	outcomes, to produce a	be assessed during this
	programs to create a design	Produce a mood board	section is mainly	To understand the rules	final product and evaluate	term.
	development leading to using	or inspiration board	developing the drawing	and requirements to	-	
	cardboard model, to encourage	Annotating prototypes,	techniques to support	present an object in	Objectives	
	them to develop their designs	describing functions	design communication	orthographic	To understand the way	
	further.	and the aesthetics	in terms various types	projection.	that brands are advertisers	
		Give reasons for choice	of drawings.	To be able to use a	use branding.	
	Objectives 1 of 2	of design idea based on		combination of skills	How do designers come up	
	To be able to use their	research	Objectives 1 of 2	together to be able to	with their designs?	
	independent research by	Produce a dairy of	To understand how to	crate simple 3D shapes	To examine the basic tools	
	means of product analysis to	making	apply one-point		available in 2D Design. To	
	influence their designs.	Evaluate final model,	perspective technique		discover how to use them	
	Learn about different design	with the feedback of	to cubes. To apply that		to produce a house	
	eras and design history.	their peers	knowledge to a real		Theory lesson about the	
	To be able to effectively use	Skills: Research,	design need (a room)		advantage and	
	cardboard to create mock up	Analytical, Prototyping,	To understand how to		disadvantage of the CAD	
	prototypes to help encourage	Problem Solving, Using	apply two point		CAM and introduction CAD	
	more ideas.	CAD	perspective technique		tools such as 2D design,	
	To be able to create a good	Language for Learning:	to cubes. To apply that		Sketch up etc	
	quality chair design that meets	Literacy	knowledge to a real			
	the solution of the brief.	Through this unit students will be able to	design need (a house)		Practical lesson Start:	
			To present ideas so		Laser Cutter Demo Main;	
	,	understand, use and	they stand out, have		Pros and cons of CAD/CAM	
	,	spell correctly words relating to materials	depth and realism. To understand the rules			
		Telatilig to materials	and requirements to		Assassment and	
			use this technique to		Assessment and	
			present 3d images		evaluation; to recognise	
	,		present su images		which technique is most appropriate for a range of	
	,				tasks	
					rasks	

8	Our KS3 schemes of work have	Objective 1 of 2	Technical Knowledge	Objectives 2 of 2	Technical Knowledge:	Super Curriculum
	been planned to ensure	To develop knowledge	(Design Methods)	What is the various	Specialist technical	This project is all about
	students can see the value of	and understanding of	Students should	aspect of sustainability	principals	sustainability and
	design and technology and are	materials, tools,	understand how the	to consider when	How more advanced	students will be
	enthused to opt for the subject	machinery and	following might present	designing and	electrical and electronic	completing
	at GCSE. Expectations and skills	processes.	opportunities and	developing a concept	systems can be powered	sustainability project
	are repeated giving students	Select and use a range	constraints that	e.g. 6Rs	and used in their products	aiming for plant pot.
	the opportunity to reflect on	of tools, equipment and	influence the processes	Evolution of design;	With use of CAD toll	AN opportunity to work
	what they have done and refine	processes safely and	of designing and	Understanding of	understand how to use	independently as well
	their efforts the next time they	accurately.	making.	planned and	simple electronic circuits	as collaboratively and
	complete it. It is also hoped	Understand how to	Objectives 1 of 2	Obsolescence	incorporating inputs and	appreciating all aspects
	that giving students some	take account of working	Design Cycle; to	Mechanism;	outputs. How to apply	of sustainability
	autonomy to design and make	characteristics of	understand what the	understanding the	computing and use	including upcycling.
	their own products will allow	materials and	Design Cycle process is	basics of different types	electronics to embed	Students will be
	students to practice higher	components and	and why it is important	of mechanisms and	intelligence in products	carrying out the project
	level learning.	restrictions imposed by	Level of Production	uses of the forces	that respond to inputs.	throughout the year
	Materials Characteristics,	tools and equipment.	To understand what	associated with it.	Make use of sensors to	and it will be assessed
	Processes and Skills	Knowledge and	scale of production is	Explore how different	detect input and provide	during this term.
	Students will be designing and	understanding	and know the different	mechanisms can be	an output. Carry out a	
	making a identity tag using	required: Health and	levels.	applied to functioning	project to design and	
	MDF, pewter materials and	safety with a particular	Sustainability; Students	designs	make an electronic system	
	casting process. They will	focus on metal work.	should have a		to solve the problem of	
	design and communicate their	Marking out	knowledge and		moisture tester. The	
	ideas through hand drawn	techniques, the use of	understanding of the		project will	
	sketches and technical	moulds and accuracy.	ecological and social		enable students to	
	drawings. This will then lead to	Understanding of the	footprint left by		experience the design and	
	practical activities in the D&T	different types of	designers.		manufacture of simple	
	workshop and the	casting and casting			electronic	
	manufacturing of their final	processes.			circuits.	
	design. Alongside practicals,	Use of computer-aided			Objectives 1 of 2;	
	students will study material	design and			to establish understanding	
	properties and types of	manufacture skills, the			of electronic circuits and	
	manufacturing.	use of 2D Techsoft			their science behind it	
	Objectives 2 of 2	Design and laser cutter			to establish technical	
	To enable pupils to develop				design techniques and	
	their practical skills.				develop specialist	
	To increase awareness of				manufacturing processes	
	health and safety in a				explore the opportunities	
	potentially dangerous area.				of model making	

	Gain research through the use of questionnaires and market research of target users.				Objectives 2 of 2; Pupils to further understand: • The need to investigate the background to a problem. • How to select appropriate components to build simple electronic circuits. • The importance of planned manufacture. • The need to build models to evaluate design ideas. • How to improve a product by evaluation.	
9	DT rotation 1 It is our intent to give students the confidence and skills they need to solve real life problems for a specific user. Design and technology is a subject where students create ideas and make them a reality. Whilst creating solutions to a given problem students will have to consider important factors alongside the environmental and social impact of their concepts. We as teachers want our students to design innovative ideas that look good and function effectively. Design and	DT rotation 2 students will develop skills and gain experience; DT project task analysis and its importance A list of specifications using ACCESS FM and a design brief Finish a product analysis of three existing container living projects Know how to set up your technical drawing page with boarder and heading Pick your best idea and do a	Engineering rotation 1 Objectives To understand the different design strategies that are used to make a new product. To understand who the user is and where needs they have on a product. To understand what ergonomics and anthropometric data is and how it effects product design	Engineering rotation 2 To develop simple hand drawing techniques and image presentation skills using a set theme similar to a GCSE NEA project. To gain enhanced understanding of basic CAD packages to produce realistic outcomes, to produce a final design and evaluate.	Electronics rotation 1 Electronics enables learners to: develop scientific knowledge and conceptual understanding of the behaviour of analogue and digital electrical/electronic circuits including a wide range of electronic components develop an understanding of the nature, processes and methods of electronics as an engineering discipline to help them answer	Electronics Rotation 2 Further Electronics opportunities would enable learners to: Produce advanced designs with the least support to solve a problem and present an electronic solution. With support design and build prototype circuit in CAD and on breadboard.

	technology has strong cross curricular links with other subjects in the curriculum. Concepts learnt in science and maths can be applied throughout the design process developing student understanding.	orthographic drawing of your design Make sure ALL technical drawings are done before modelling Start modelling your container living project Evaluate your project against specifications you made when designing ideas From feedback from previous lesson students will have a chance to improve models and research	To develop initial ideas for a product using all drawing techniques To develop modelling techniques; CAD tools and card board To evaluation and analyse feedback for further improvement		questions about practical circuits be aware of new and emerging technologies develop and learn how to apply observational, practical, problem solving and evaluative skills in the identification of needs in the world around them and to propose and test electronic solutions progress to GCSE/Level 2 qualifications in electronics	Prepare for next stage of electronic components and circuit rotation 2. Evaluate technical knowledge and identify further improvements.
10	The subjects offered in design and technology have strong links with real world industry. For many studying design and technology can be the first introduction into engineering; working in the creative design sector; electronics system industry or working in product design. It is our intent to give students the confidence and skills they need to solve real life problems for a specific user. Design and	Appropriate techniques used to communicate design ideas Use of appropriate marking out methods to ensure quality Use appropriate marking out methods, data points and coordinates Specialist tools and equipment	Investigate the work of a designer or company The work of others Material categories Material properties Sources and origins Stock forms, types and sizes Forces and stresses; types of	Freehand sketching, Isometric 2D/3D drawing, Annotated drawings Material management; cut materials efficiently to organise Specialist techniques and processes –	Industry robotics; use of automation in the workplace Prototype development, Specialist tools and equipment Specialist techniques and processes, Production techniques and systems, use of Computer Aided Design (CAD)	Environment – Design strategies: Iteration Environment – pollution, global warming Sustainability – finite/non-finite Product analysis and evaluation The six Rs (reduce, refuse, re-use, repair, recycle and rethink)

	technology is a subject where students create ideas and make them a reality. Whilst creating solutions to a given problem students will have to consider important factors alongside the environmental and social impact of their concepts. We as teachers want our students to design innovative ideas that look good and function effectively. Materials and their working properties Mechanical devices Design strategies Drawing Techniques Testing design strategies Communication of ideas	Using and working with materials — how to shape and form using abrasion, cutting and addition Development in new materials	forces and ways to reinforce materials Design a seating solution Collaboration	surface treatments and finishes Specialist techniques and processes (the use of production aids, tolerance, commercial processes and QC) Prototype designs which: demonstrate innovation are functional consider aesthetics		Students to record information for revision purposes. Select and use specialist techniques and processes. Consider accuracy Shape, fabricate and construct a high quality prototype
11	DT GCSE Launch of NEA contextual challenge Selection of the correct hand tools and machinery Safe use of tools Selection and use of specialist techniques (used to shape, fabricate, construct) Selection of the correct hand tools and machinery Safe use of tools	Selection of the correct hand tools and machinery. Safe use of tools Selection and use of specialist techniques (used to shape, fabricate, construct) Preparing a material for a surface finish Applying a surface finish	NEA Section A-D completion. Design and develop contextual challenged based product. Planning and making of the model. Working towards the plan for the prototype manufacturing	Prelim revision Prelim NEA e-folio (design portfolio) plus prototype internal deadline submission	Revision; preparing for the exam and submitting NEA grades to the examination board	Exam

12	Selection and use of specialist techniques (used to shape, fabricate, construct) Preparing a material for a surface finish Applying a surface finish Selection of the correct hand tools and machinery. Safe use of tools Selection and use of specialist techniques (used to shape, fabricate, construct) Preparing a material for a surface finish Applying a surface finish Technical principles (TP)	Design methods and	Responsible design	The use of finishes (TP)	Design communication	End of Year exam-
	Design and making principles (DMP) Materials and their applications (TP) Testing materials (TP) Performance characteristics of materials (TP): papers and boards composites. Performance characteristics of materials (TP) polymer based sheet and film biodegradable polymers. Performance characteristics of materials (TP): woods smart and modern materials.	processes (DMP) Design theory (DMP) Technology and cultural changes (DMP) Design processes (DMP) Critical analysis and evaluation (DMP) Selecting appropriate tools, equipment and processes (DMP) Accuracy in design and manufacture (DMP) Introduction of NEA	(DMP) Design for manufacture (DMP) Enhancement of materials (TP) Forming, redistribution and addition processes (TP)	Modern and industrial commercial practice (TP) Digital design and manufacture (TP) Product design and development (TP) Health and safety (TP) Design for manufacturing, maintenance, repair and disposal (TP) Enterprise and marketing in the development of products (TP) NEA-contextual challenge	(TP) Technology and cultural changes (A-level specific) (DMP) Design processes — prototype development (A-level specific) (DMP) Design processes (A-level specific) (DMP) — iterative design in commercial contexts NEA	internal Design theory (A-level specific) (DMP) Design theory (A-level specific) (DMP) Selecting appropriate tools, equipment and processes (A-level specific) (DMP) Responsible design (A-level specific) (DMP) Design for manufacture and project management (A-level specific) (DMP) NEA

	Performance characteristics of materials (TP) Metals Performance characteristics of materials (TP) Polymers		The use of finishes (TP) NEA-contextual challenge			
13	National and international standards in product design (A-level specific) (DMP) Performance characteristics of materials (A-level specific) (TP) Performance characteristics of materials (A-level specific) (TP): Performance characteristics of materials (A-level specific) (TP) Forming, redistribution and addition processes (TP) NEA – portfolio	Forming, redistribution and addition processes (TP) The use of finishes (TP) The use of finishes (TP) Modern and industrial commercial practice (TP) Modern and industrial commercial practice (TP) Digital design and manufacture (TP) NEA – portfolio Prelim- Internal exams	Digital design and manufacture ((TP) The requirements for product design and development (TP) Protecting designs and intellectual property (TP) Design for manufacturing, maintenance, repair and disposal (TP) Feasibility studies (TP) Enterprise and marketing in the development of products (TP)	Modern manufacturing systems (TP) Prlim-Internal exams Detailed product study Detailed product comparison Detailed product analysis NEA Completion and internal submission deadline	Exam preparation – (TP) Exam preparation – (TP) Exam preparation – (DMP) Exam preparation – (DMP) Exam preparation – (DMP)	External Exams